Genital Organs

Genital Organs in Male


This is the main male organ of coitus. It is made of three bodies and covered with skin. It varies in size from person to person, Its normal length when in the flaccid condition is 7 to 11.5com and 12 to 21 cms when erect.

The penis, the male copulatory organ, is a cylindrical pendant organ located anterior to the scrotum and functions to transfer sperm to the vagina. The penis consists of three columns of erectile tissue that are wrapped in connective tissue and covered with skin. The two dorsal columns are the corpora cavernosa. The single, midline ventral column surrounds the urethra and is called the corpus spongiosum.

The penis has a root, body (shaft), and glans penis. The root of the penis attaches it to the pubic arch and the body is the visible, pendant portion. The corpus spongiosum expands at the distal end to form the glans penis. The urethra, which extends throughout the length of the corpus spongiosum, opens through the external urethral orifice at the tip of the glans penis. A loose fold of skin, called the prepuce, or foreskin, covers the glans penis.


The tip of the penis is known as glans. It is an expansion of the corpus spongionum. The base of the glans projects out from the main body of the penis and this projecting margin is called corona.


This gland appears to be a sexual organ, since in animals that have seasonal sexuality, the prostate enlarges during the mating season and then shrinks until the next. In the adult human male, it is about 4cms across as its base and is the size of chestnut. The prostate is composed of muscular and glandular tissue. Its secretions pass down about 20 small ducts that lead to the section of the Urethra that pierces the prostate gland, but their purpose is not yet fully understood.


Smegma is mixture of dead skin cells and skin grease and looks like soap as it hides under the foreskin of the penis. In women it is found near clitoris. The male reproductive system, like that of the female, consists of those organs whose function is to produce a new individual, i.e., to accomplish reproduction. This system consists of a pair of testes, a network of excretory ducts (epididymis, ductus deferens, and ejaculatory ducts), seminal vesicles, the prostate, the bulb urethral glands, and the penis.


The male gonads, testes, or testicles, begin their development high in the abdominal cavity, near the kidneys. During the last two months before birth, or shortly after birth, they descend through the inguinal canal into the scrotum, a pouch that extends below the abdomen, posterior to the penis. Although this location of the testes, outside the abdominal cavity, may seem to make them vulnerable to injury, it provides a temperature about 3°C below normal body temperature. This lower temperature is necessary for the production of viable sperm. The scrotum consists of skin and subcutaneous tissue. A vertical septum, or partition, of subcutaneous tissue in the center divides it into two parts, each containing one testis. Smooth muscle fibers, called the dartos muscle, in the subcutaneous tissue contract to give the scrotum its wrinkled appearance. When these fibers are relaxed, the scrotum is smooth. Another muscle, the cremaster muscle, consists of skeletal muscle fibers and controls the position of the scrotum and testes. When it is cold or a man is sexually aroused, this muscle contracts to pull the testes closer to the body for warmth.


Each testis is an oval structure about 5 cm long and 3 cm in diameter. A tough, white fibrous connective tissue capsule, the tunica albuginea, surrounds each testis and extends inward to form septa that partition the organ into lobules. There are about 250 lobules in each testis. Each lobule contains 1 to 4 highly coiled seminiferous tubules that converge to form a single straight tubule, which leads into the rete testis. Short efferent ducts exit the testes. Interstitial cells (cells of Leydig), which produce male sex hormones, are located between the seminiferous tubules within a lobule.


Sperm are produced by spermatogenesis within the seminiferous tubules. A transverse section of a seminiferous tubule shows that it is packed with cells in various stages of development. Interspersed with these cells, there are large cells that extend from the periphery of the tubule to the lumen. These large cells are the supporting, or sustentacular cells (Sertoli's cells), which support and nourish the other cells.

Early in embryonic development, primordial germ cells enter the testes and differentiate into spermatogonia, immature cells that remain dormant until puberty. Spermatogonia are diploid cells, each with 46 chromosomes (23 pairs) located around the periphery of the seminiferous tubules. At puberty, hormones stimulate these cells to begin dividing by mitosis. Some of the daughter cells produced by mitosis remain at the periphery as spermatogonia. Others are pushed toward the lumen, undergo some changes, and become primary spermatocytes. Because they are produced by mitosis, primary spermatocytes, like spermatogonia, are diploid and have 46 chromosomes.

Each primary spermatocytes goes through the first meiotic division, meiosis I, to produce two secondary spermatocytes, each with 23 chromosomes (haploid). Just prior to this division, the genetic material is replicated so that each chromosome consists of two strands, called chromatids, that are joined by a centromere. During meiosis I, one chromosome, consisting of two chromatids, goes to each secondary spermatocyte. In the second meiotic division, meiosis II, each secondary spermatocyte divides to produce two spermatids. There is no replication of genetic material in this division, but the centromere divides so that a single-stranded chromatid goes to each cell. As a result of the two meiotic divisions, each primary spermatocyte produces four spermatids. During spermatogenesis there are two cellular divisions, but only one replication of DNA so that each spermatid has 23 chromosomes (haploid), one from each pair in the original primary spermatocyte. Each successive stage in spermatogenesis is pushed toward the center of the tubule so that the more immature cells are at the periphery and the more differentiated cells are nearer the center.

Spermatogenesis (and oogenesis in the female) differs from mitosis because the resulting cells have only half the number of chromosomes as the original cell. When the sperm cell nucleus unites with an egg cell nucleus, the full number of chromosomes is restored. If sperm and egg cells were produced by mitosis, then each successive generation would have twice the number of chromosomes as the preceding one.

The final step in the development of sperm is called spermiogenesis. In this process, the spermatids formed from spermatogenesis become mature spermatozoa, or sperm. The mature sperm cell has a head, midpiece, and tail. The head, also called the nuclear region, contains the 23 chromosomes surrounded by a nuclear membrane. The tip of the head is covered by an acrosome, which contains enzymes that help the sperm penetrate the female gamete. The midpiece, metabolic region, contains mitochondria that provide adenosine triphosphate (ATP). The tail, locomotor region, uses a typical flagellum for locomotion. The sperm are released into the lumen of the seminiferous tubule and leave the testes. They then enter the epididymis where they undergo their final maturation and become capable of fertilizing a female gamete.

Sperm production begins at puberty and continues throughout the life of a male. The entire process, beginning with a primary spermatocyte, takes about 74 days. After ejaculation, the sperm can live for about 48 hours in the female reproductive tract.

Duct System

The ductus deferens, also called vas deferens, is a fibromuscular tube that is continuous ( or contiguous) with the epididymis. It begins at the bottom (tail) of the epididymis then turns sharply upward along the posterior margin of the testes. The ductus deferens enters the abdominopelvic cavity through the inguinal canal and passes along the lateral pelvic wall. It crosses over the ureter and posterior portion of the urinary bladder, and then descends along the posterior wall of the bladder toward the prostate gland. Just before it reaches the prostate gland, each ductus deferens enlarges to form an ampulla. Sperm are stored in the proximal portion of the ductus deferens, near the epididymis, and peristaltic movements propel the sperm through the tube.

The proximal portion of the ductus deferens is a component of the spermatic cord, which contains vascular and neural structures that supply the testes. The spermatic cord contains the ductus deferens, testicular artery and veins, lymph vessels, testicular nerve, cremaster muscle that elevates the testes for warmth and at times of sexual stimulation, and a connective tissue covering

Ejaculatory Duct

Each ductus deferens, at the ampulla, joins the duct from the adjacent seminal vesicle (one of the accessory glands) to form a short ejaculatory duct. Each ejaculatory duct passes through the prostate gland and empties into the urethra.


The urethra extends from the urinary bladder to the external urethral orifice at the tip of the penis. It is a passageway for sperm and fluids from the reproductive system and urine from the urinary system. While reproductive fluids are passing through the urethra, sphincters contract tightly to keep urine from entering the urethra.

The male urethra is divided into three regions. The prostatic urethra is the proximal portion that passes through the prostate gland. It receives the ejaculatory duct, which contains sperm and secretions from the seminal vesicles, and numerous ducts from the prostate glands. The next portion, the membranous urethra, is a short region that passes through the pelvic floor. The longest portion is the penile urethra (also called spongy urethra or cavernous urethra), which extends the length of the penis and opens to the outside at the external urethral orifice. The ducts from the bulbourethral glands open into the penile urethra.

Accessory Glands

The accessory glands of the male reproductive system are the seminal vesicles, prostate gland, and the bulbourethral glands. These glands secrete fluids that enter the urethra.

Seminal Vesicles

The paired seminal vesicles are saccular glands posterior to the urinary bladder. Each gland has a short duct that joins with the ductus deferens at the ampulla to form an ejaculatory duct, which then empties into the urethra. The fluid from the seminal vesicles is viscous and contains fructose, which provides an energy source for the sperm; prostaglandins, which contribute to the mobility and viability of the sperm; and proteins that cause slight coagulation reactions in the semen after ejaculation.

Bulbourethral Glands

The paired bulbourethral (Cowper's) glands are small, about the size of a pea, and located near the base of the penis. A short duct from each gland enters the proximal end of the penile urethra. In response to sexual stimulation, the bulbourethral glands secrete an alkaline mucus-like fluid. This fluid neutralizes the acidity of the urine residue in the urethra, helps to neutralize the acidity of the vagina, and provides some lubrication for the tip of the penis during intercourse.

Seminal Fluid

Seminal fluid, or semen, is a slightly alkaline mixture of sperm cells and secretions from the accessory glands. Secretions from the seminal vesicles make up about 60 percent of the volume of the semen, with most of the remainder coming from the prostate gland. The sperm and secretions from the bulbourethral gland contribute only a small volume.

The volume of semen in a single ejaculation may vary from 1.5 to 6.0 ml. There are usually between 50 to 150 million sperm per milliliter of semen. Sperm counts below 10 to 20 million per milliliter usually present fertility problems. Although only one sperm actually penetrates and fertilizes the ovum, it takes several million sperm in an ejaculation to ensure that fertilization will take place.

Sexual Response

The male sexual response includes erection and orgasm accompanied by ejaculation of semen. Orgasm is followed by a variable time period during which it is not possible to achieve another erection.

Three hormones are the principal regulators of the male reproductive system. Follicle-stimulating hormone (FSH) stimulates spermatogenesis; luteinizing hormone (LH) stimulates the production of testosterone; and testosterone stimulates the development of male secondary sex characteristics and spermatogenesis.

Genital Organs in Female


Breast is apparent distinction between male and female. It is a mass of fatty tissue. The main function of the breast is to produce milk for the newborn baby. Breasts vary in size and shape. But the shape and size of breasts has nothing to do with women fertility and sexual desires. Breasts become slightly firm during excitement. Whenever a woman feels lumps or bumps, she should immediately consult a competent physician.


Situation of the clitoris is on the front of pubic bone and is almost surrounded by labia and consists of erectile tissues and richly supplied with nerves. This is most sensitive parts of the vulva. The size of the clitoris is 3/4 inch. The role of clitoris in sex is still unknown, but it appears to be involved in female excitement.

Egg (Ovum)

The name given to female reproductive cell. They vary too much in size but basically they have same shape. Egg is expelled from ovary to fallopian tube, where it is fertilised by the male sperm, otherwise it dies there within few days.

Fallopian Tubes

These tubes extend from the ovaries that are situated on neither side of the womb. Each is about 4" long. There is a free passage from vagina to womb and womb to fallopian tubes.


It is the female genital passage. Vagina ensheathe the penis during intercourse. It is made of modified skin, which covers an elastic fibro vascular structure. From the opening it goes upwards at the angle of 600-700. At the top cervix points in it. It is approximate length is 10 CMS. The vagina undergoes active changes during coitus.

Womb (Uterus)

This is a hollow, muscular and thick walled organ connected with fallopian tubes and it is pointed towards cervix. It is about 8 to 9 CMS in length, 6 CMS across in its widest part and about 4 CMS thick in the thickest part. The walls of the womb are about 1 to 2 CMS thick and the length of the internal cavity is about 7.5 to 8 CMS, measured from the external Os.